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Summary 
 

The main objective of this project is to write a clear mathematical supplement to 

the book “Longitude” by Dava Sobel. This bestseller gives a wonderful summary 

of the history of the problem, but does not cover the mathematical background. In 

this project, a summary of the theory of navigation and the mathematical 

background of the different methods for finding the longitude are being covered. 

 

Throughout history, it has been easy to determine latitude by measuring the angle 

between the Pole star or the sun at noon and the horizon by a simple angle 

measuring device or an advanced sextant. But how to determine longitude at sea 

had been a serious problem for a long time. 

 

Since they could find latitude, but not longitude, navigators run mainly north and 

south until they reached the latitude of their destinations, and then turn east or west 

to make a landfall. Because the ships were not taking the most direct route to their 

destination, the journeys were long and dangerous. Thus, there was a need to know 

longitude. 

 

In the ancient times, lunar eclipse was used as a clock for determining longitude. 

However, lunar eclipses are rare. Hence it is of no use to ships. Later, Jupiter's 

moon's eclipse was also used as a celestial clock for determining longitude. Unlike 

lunar eclipse, Jupiter's moon experienced a lot of eclipses. This idea actually 

worked but the difficulty in making these observations on a rocking ship made it 

impractical.  

 

Lunar distance method was another theoretically possible method by measuring 

the angle between the moon and other celestial bodies to determine precise time. 

However, the calculations were difficult and time consuming. The heyday of 

Lunar distance method was probably from about 1780 to 1840.  

 

Finally in 1759, a British clockmaker named John Harrison developed a clock, 

called the chronometer, which was consistently accurate at sea. Because the earth 



rotates 15 degrees per hour, if you know the precise time at the Greenwich 

meridian of longitude, the difference between that time and the navigator's local 

time (the time at his location) will give him his longitude. At last the mariner had 

the ability to easily and consistently determine his exact position. 

 

With the invention of the chronometer, the Lunar distance method was being 

displaced completely. The introduction of the chronometer not only solved the 

problem of measuring longitude but also made possible more flexible methods of 

fixing position which did not involve finding latitude and longitude separately. In 

1837, Captain Charles Sumner devised a trigonometric method of obtaining from 

celestial observations the lines known as Sumner lines of position. In 1875, 

Frenchman Marcq St. Hilaire improved upon Sumner's trigonometric calculations. 

Other methods such as the prime vertical method and the meridian transit method 

were also introduced for determining longitude. 

 

Hence, with the chronometer, longitude can be determined using the any of those 

methods mentioned above. Thus, navigators no longer have to fear being lost at 

sea. 

 

In this thesis, chapter 1 starts off with a short introduction to the problems of 

determining longitude. Next, chapter 2 to 4 introduce all the terminology and 

formulas used in this thesis. And chapter 5 gives a description on the evolution and 

the basic principal of a sextant. Then chapter 9 describes the invention of the 

chronometer. Finally, chapter 6 to 8 and chapter 10 to 13 touch on all those 

methods mentioned above to determine longitude in greater details. 
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Chapter 1 
 

Introduction 
 

 

 

 
Throughout history, it has been easy to determine latitude by measuring the angle 

between the pole star and the horizon by a simple measuring device or an 

advanced sextant. Later with the available of tables for the sun declination, latitude 

can also be determined by measuring the angle between the sun and the horizon. 

 

At first sight it looks as though we ought to be able to find longitude in much the 

same way; we can't, because the earth is spinning. The essential difference is, of 

course, that latitude is measured with respect to the equator and poles of the earth 

which remain, stationary with respect to the stars or the sun. On the other hand, 

longitude is measured from some arbitrary north-south line, nowadays through 

Greenwich, and this line is not fixed with respect to the stars or sun but rotates 

with the earth. This means that to measure longitude by the stars or the sun we are 

concerned essentially with the rotation of the earth or, in other words, with the 

measurement of time. 

 

As early as 1514, navigators knew well that the secret to determining longitude at 

sea lay in comparing the time aboard ship to the time at the home port at the very 

same moment. They could then convert the hour difference between the two places 

into a geographical one. Since the earth takes twenty-four hours to complete one 

full revolution of three hundred sixty degrees, in one hour it completes one 

twenty-fourth of that, or fifteen degrees. Each hour's time difference between the 

ship and the starting point therefore marks a progress of fifteen degrees of 

longitude to the east or west. Unfortunately, although navigators could figure out 

their local time at sea by watching the sun every day to see when it reached its 

highest point in the sky (at noon), they could not keep track of time at another 



place. For that they would have needed a clock or a watch set to the home port 

time. But pendulum clocks went haywire on the decks of rolling ships: they 

slowed down, or sped up, or stopped running altogether.  

 

Early attempts to find longitude, such as the Lunar eclipses method, the Jupiter's 

moon eclipses method and the Lunar distances method were used at sea. But each 

of these methods, which will be discussed in later chapters, has it own weakness 

and was not practical at sea. 

 

Astronomers tried to give mariners a way to tell time in two places at once by the 

moon and stars. Indeed, the great observatories in Paris and London were founded  

(in 1666 and 1674, respectively) not to conduct pure research in astronomy, but to 

perfect the art of navigation. 

 

None the less, as the 18th century dawned no better method had come along and 

the increasing toll of lost ships and lives was causing growing concern. In a 

notorious accident in 1707, Royal Navy ships, believing themselves to be in 

deeper water further east, were wrecked on the Scilly Isles with the loss of almost 

2000 lives. 

 

Finally in 1714, the British Government offered, by Act of Parliament, 20 000 

pounds for a solution which could provide longitude to within half-a-degree (2 

minutes of time). The methods would be tested on a ship, sailing over the ocean, 

from Great Britain to any such Port in the West Indies as those Commissioners 

choose without losing their longitude beyond the limits before mentioned and 

should prove to be practicable and useful at sea. 

 

 

 

 

 

 



Chapter 2 
 

Terrestrial, Celestial and Horizon  

Coordinate Systems 
 

 

 

 

2.1 Terrestrial Coordinate System 
 

The position of an observer on the earth's surface can be specified by the 

terrestrial coordinates, latitude and longitude. 

 

 Lines of latitude are imaginary lines which run in an east-west direction 

around the world (Figure 2.1). They are also called parallels of latitude 

because they run parallel to each other. Latitude is measured in degrees (°). 

 
 
 

 

Figure 2.1 Lines of latitude. 

 

 



The most important line of latitude is the Equator (0°). The North Pole is 

90° North (90°N) and the South Pole is 90° South (90°S). All other lines of 

latitude are given a number between 0° and 90°, either North (N) or South 

(S) of the Equator. Some other important lines of latitude are the Tropic of 

Cancer (23.5°N), Tropic of Capricorn (23.5°S), Arctic Circle (66.5°N) and 

Antarctic Circle (66.5°S). 

 

Lines of longitude are imaginary lines which run in a north-south direction, 

from the North Pole to the South Pole (Figure 2.2). They are also measured 

in degrees (°). 

 

 

Figure 2.2 Lines of longitude. 

 

Any circle on the surface of a sphere whose plane passes through the center 

of the sphere is called a great circle. Thus, a great circle is a circle with the 

greatest possible diameter on the surface of a sphere. Any circle on the 

surface of a sphere whose plane does not pass through the center of the 

sphere is called a small circle. 

 

A meridian is a great circle going through the geographic poles, the poles 

where the axis of rotation (polar axis) intersects the earth's surface. The 

upper branch of a meridian is the half of the great circle from pole to pole 

passing through a given position; the lower branch is the opposite half. 

The equator is the only great circle whose plane is perpendicular to the 

polar axis. Further the equator is the only parallel of latitude being a great 



circle. Any other parallel of latitude is a small circle whose plane is parallel 

to the plane of the equator. 

 

The Greenwich meridian, the meridian passing through the Royal 

Greenwich Observatory in London (closed in 1998), was adopted as the 

prime meridian at the International Meridian Conference in October 1884. 

Its upper branch (0°) is the reference for measuring longitudes, its lower 

branch (180°) is known as the International Dateline. All the lines of 

longitude are given a number between 0° and 180°, either East (E) or West 

(W) of the Greenwich Meridian. 

 

 

Figure 2.3 

 

 

2.2 The Celestial Sphere 
 

The celestial sphere is an imaginary sphere whose center coincides with 

the center of the Earth. It represents the entire sky; all celestial bodies other 

than the earth are imagined as being located on its inside surface. If the 

earth's axis is extended, the points where it intersects the celestial sphere 

are called the celestial poles; the north celestial pole is directly above the 

earth's north pole, and the south celestial pole is directly below the earth's 

south pole. The great circle on the celestial sphere halfway between the 

celestial poles is called the celestial equator; it can be thought of as the 

earth's equator projected onto the celestial sphere (Figure 2.4).  



 

Figure 2.4 

 

 

2.3 Other Reference Markers on the Celestial Sphere 
 

The earth orbits the sun in a plane called the ecliptic (Figure 2.5). From 

our vantage point, however, it appears that the sun circle us once a year in 

that same plane. Hence, the ecliptic may be alternately defined as "the 

apparent path of the sun on the celestial sphere". 

 

 

Figure 2.5 Earth orbits the sun in an ecliptic plane. 

 

The ecliptic is tilted 23.5 degrees with respect to the celestial equator 

because the earth's rotation axis is tilted by 23.5 degrees with respect to its 

orbital plane. Be sure to keep distinct in your mind the difference between 

the slow drift of the sun along the ecliptic during the year and the fast 

motion of the rising and setting sun during a day. 

 



The ecliptic and celestial equator intersect at two points: the vernal 

(spring) equinox and autumnal (fall) equinox. The sun crosses the 

celestial equator moving northward at the vernal equinox around March 21 

and crosses the celestial equator moving southward at the autumnal 

equinox around September 22. When the sun is on the celestial equator at 

the equinoxes, everybody on the earth experiences 12 hours of daylight and 

12 hours of night. The day of the vernal equinox marks the beginning of 

the three-month season of spring on our calendar and the day of the autumn 

equinox marks the beginning of the season of autumn (fall) on our 

calendar.  

 

 

 

Figure 2.6 

 

 

2.4 The Celestial Coordinate System 
 

The celestial coordinate system is used for indicating the positions of 

celestial bodies on the celestial sphere. 

 

To designate the position of a celestial body, consider an imaginary great 

circle passing through the celestial poles and through the body. This is the 

body's hour circle, analogous to a meridian of longitude on earth. Then 

measure along the celestial equator the angle between the vernal equinox 

and the body's hour circle. This angle is called the body's right ascension 



(RA) and is measured in hours, minutes, and seconds rather than in the 

more familiar degrees, minutes and seconds. (There are 360 degrees or 24 

hours in a full circle.) The right ascension is always measured eastward 

from the vernal equinox.  

 

Next measure along the body's hour circle and the angle between the 

celestial equator and the position of the body. This angle is called the 

declination (Dec) of the body and is measured in degrees, minutes and 

seconds north or south of the celestial equator, analogous to latitude on the 

earth (Figure 2.7).  

 

Right ascension and declination together determine the location of a body 

on the celestial sphere. 
 

 

Figure 2.7 shows the Dec and RA of a celestial body. 

 

 

2.5 Geographical Position of a Celestial Body 
 

Now consider a line connecting the center of a celestial body and the center 

of the earth. The point where this line crosses the surface of the earth is 

called the geographical position (GP) of the body (Figure 2.8). An 



observer positioned in the GP of a body will see the body directly above 

his head. 

 

 

Figure 2.8  shows the GP of a celestial body. 

 

Because both the equator and the celestial equator are in the same plane, 

the latitude of the GP is equal to the declination of the body. The longitude 

of the GP is called Greenwich Hour Angle (GHA). The GHA of any 

body is the angle, measured at the pole of the celestial sphere, between the 

Greenwich meridian and the hour circle of the body. The angle is measured 

along the celestial equator westward from the upper branch of the 

Greenwich celestial meridian, from 0° through 360° (Figure 2.9). The 

GHA differs from the longitude on the earth's surface in that longitude is 

measured east or west, from 0° through 180°, and remains constant. The 

GHA of a body, however, increases through each day as the earth rotates. 

 

 

Figure 2.9 shows the Dec and GHA of a celestial body. 
 



2.6 Horizon Coordinate System 
 

The apparent position of a body in the sky is defined by the horizon 

coordinate system (Figure 2.10). The altitude, H, is the vertical angle 

between the horizontal plane to the line of sight to the body. The point 

directly overhead the observer is called the zenith. The zenith distance, z, 

is the angular distance between the zenith and the body. H and z are 

complementary angles (H + z = 90°). The azimuth, AzN, is the horizontal 

direction of the body with respect to the geographic (true) north point on 

the horizon, measured clockwise through 360°. 

 

 

Figure 2.10 

  

Each of the following imaginary horizontal planes parallel to each other 

can be used as the reference plane for the horizon coordinate system 

(Figure 2.11). 

 

The true horizon is the horizontal plane tangent to the earth at the 

observer's position. 

 

The celestial horizon is the horizontal plane passing through the center of 

the earth. 

 



 

Figure 2.11 

 

None of the above horizon coincides with the visible horizon used as the 

natural reference at sea. Only the altitude with respect to the celestial 

horizon is relevant to navigational calculations. Since it can not be 

measured directly, it has to be derived from the altitude with respect to the 

visible and true horizon (altitude corrections, see chapter 5). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3 
 

Time Measurement 
 

 

 

 

3.1 Greenwich Mean Time  
 

The time standard for celestial navigation is Greenwich Mean Time, 

GMT. GMT is based upon the GHA of the mean sun (an imaginary sun 

which move at a constant speed): 

 

[ ]
[ ]

GMT h
GHAMean Sun

=
°
+

15
12.  

(If GMT is greater than 24 h, subtract 24 hours.) 

 

 In other words, GMT is the angle, expressed in hours, between the lower 

branch of the Greenwich meridian and the hour circle through the mean 

sun (Figure 3.1). The GHA of the mean sun increases by exactly 15 

degrees per hour, completing a 360 degrees cycle in 24 hours. Celestial 

coordinates tabulated in the Nautical Almanac refer to GMT. 

 

 

Figure 3.1  GHA of the mean sun. 



 

3.2 Greenwich Apparent Time  
 

The time based upon the GHA of the apparent (observable) sun is called 

Greenwich Apparent Time, GAT. The hourly increase of the GHA of the 

apparent sun is subject to periodic changes and is sometimes slightly 

greater, sometimes slightly smaller than 15 degrees during the course of a 

year. This behavior is caused by the eccentricity of the earth's orbit and its 

inclination to the plane of the equator. 

 

 

3.3 Equation of Time 
 

Most navigators are familiar with the fact that the sun transits the meridian 

on some days several minutes ahead of 12 noon local mean time and other 

days of the year it transits several minutes after 12 noon. That is, the mean 

sun and the apparent sun are out of step and the amount by which the 

apparent is ahead of the mean sun, in minutes and seconds of mean time, is 

known as the equation of time, denoted by EoT: 

 

EoT=GAT-GMT. 

 

EoT varies periodically between approximately -16 minutes and +16 

minutes. Predicted values for EoT for each day of the year (at 0:00 and 

12:00 GMT) are given in the Nautical Almanac. 

 

 

3.4 Local Mean Time 
 

Local mean time, LMT, is equal to the LHA of the mean sun as measured 

from the lower branch of the observer's meridian to the hour circle of the 

mean sun, that arc converted to time. Thus, if the observer were to locate at 

Greenwich then LMT would be identical to GMT. 



  

3.5 Local Apparent Time 
  

 Local Apparent Time, LAT, follows the argument for LMT except that 

LHA is measured from the lower branch of the observer's meridian to the 

apparent sun. The difference between local mean time and local apparent 

time is also known as the equation of time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 
 

Spherical Trigonometry 
 

 

 

 

4.1 The Spherical Triangle 
 

A spherical triangle is formed by three planes passing through the surface 

of a sphere and through the sphere's center. In other words, a spherical 

triangle is part of the surface of a sphere, and the sides are not straight lines 

but arcs of great circles (Figure 4.1).  

 

 

Figure 4.1  A spherical triangle on the surface of a sphere. 

 

Any side of a spherical triangle can be regarded as an angle - the angular 

distance between the adjacent vertices, measured from the center of the 

sphere. For example, in Figure 4.1, length of side a is equal to the angle it 

subtends at the center. And angle of A is equal to the angle between 2 

planes. The interrelations between angles and sides of a spherical triangle 

are described by the law of sines, the law of cosines for sides and the law 

of cosines for angles. 



4.2 Spherical Trigonometry 
 

 

Figure 4.2  A spherical triangle. 

 

 

Law of sines: 

sin( )
sin( )

sin( )
sin( )

sin( )
sin( )

A
a

B
b

C
c

= =  

 

Law of cosines for sides: 

 

cos( ) cos( ) cos( ) sin( ) sin( ) cos( )
cos( ) cos( ) cos( ) sin( ) sin( ) cos( )
cos( ) cos( ) cos( ) sin( ) sin( ) cos( )

a b c b c
b a c a c
c a b a b

A
B
C

= +
= +
= +

 

 

Law of cosines for angles: 

 

cos(A) cos( ) cos( ) sin( ) sin( ) cos( )
cos( ) cos( ) cos( ) sin( ) sin( ) cos( )
cos( ) cos( ) cos( ) sin( ) sin( ) cos( )

= − +
= − +
= − +

B C B C
B A C A C
C A B A B

a
b
c

 

 

 

The proof of these formulas can be found in navigational textbooks. 

 



 

These formulas allow us to calculate any quantity (angle or side) of a 

spherical triangle if three other quantities are known. In particular, the law 

of cosines for sides is of interest for navigational purposes. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 
 

How to Measure the Altitude of a 

Celestial Body 
 
 
 

 

5.1 Introduction 

he astrolabe invented by the Greeks was the first instrument used to 

e astrolabe. 

 

he development of the cross-staff supplanted the use of the astrolabe. The 

 

T

measure altitude of a celestial body. The astrolabe was mostly used in the 

Medieval Ages and by the Islamic world. However, it was cumbersome 

because it had to be suspended and often produced large, unavoidable 

errors in rough weather. 

 

 

Figure 5.1  A man using th

T

cross-staff consisted of a long piece of wood with a crosspiece that could 

slide along the staff. The navigator would sight a celestial body along the 

top of the crosspiece and move it so that the bottom tip met the horizon. 

Navigators often used the sun as a sight, and the cross-staff often caused 

eye damage for longtime navigators. 

 



 

Figure 5.2  A man using the cross-staff. 

 

The back-staff was then developed in 1590 so that navigator didn't have to 

look into the sun. The navigator faced away from the sun and used the 

shadow cast by the device to measure the angle between the body and the 

horizon. Later, smoked mirrors were added so that bodies which were too 

dim to give a shadow could be used while at the same time, dimming the 

reflection of the sun so that it could still be used. This foreshadowed the 

modern sextant. 

 

 

Figure 5.3  A man using the back-staff. 

 

The modern sextant was invented by Sir Isaac Newton in 1700. However, 

he never built one. It was an Englishman named John Hadley and an 

American named Thomas Godfrey who built two different versions of the 

sextant, both equally useful. Later, Paul Vernier added a second graduated 

arc to make measurements more precise. Even later, the micrometer screw 

were invented, which further added to the precision of the instrument and 

became what we now recognize as the modern sextant. 

 



 

Figure 5.4  A picture of a sextant. 

 

 

5.2 The Sextant 
 

The sextant is an instrument used for measuring the altitude of a celestial 

body above the sea horizon. Figure 5.5 is a diagram embodying the more 

important features of the instrument. The sextant consists of a system of 

two mirrors, a telescope and a graduated arc. The index mirror I is mounted 

on the index arm IP. The index mirror I and the index arm IP can rotate 

about an axis (perpendicular to the plane of paper) at I. To any given 

position of the index mirror and of the index arm IP, there is a 

corresponding reading on the graduated arc. The horizon mirror H is fixed 

to the framework of the instrument and perpendicular to the plane of the 

paper. T is a small telescope attached to the framework. 

 

 

Figure 5.5  Important features of a sextant. 



To find the altitude of a celestial body above the sea horizon, the observer 

holds the instrument in a vertical plane and points the telescope so as to see 

the horizon. He then moves the index mirror I by means of the arm IP until 

the image of the body is observed to be in his field of view. When the 

image appears on the line of the horizon (Figure 5.6), he notes the reading 

on the graduated arc. 

Figure 5.6  The sun's image is on the line of the sea horizon. 

 

Let IS denote the direction of a celestial body. A ray in the direction SI is 

reflected by the index mirror I along IH; it is then reflected by the horizon 

mirror H along HT, and the body is thus observed in the telescope in the 

direction in which the sea horizon is seen. 

 

The altitude of the body is simply related to the inclination of the index 

mirror I to the horizon mirror H - in Figure 5.5 the inclination is the angle 

IDH, which we denote by x. Let AIB and HB be the normals to the mirrors 

I and H; then the angle IBH is evidently x. The laws of reflection give  

 

SIA AIH∃ ∃= =θ  

and IHB BHC∃ ∃ .= = φ  

 

If  is the body's altitude above the sea horizon, then a SCH a∃ .=  From the 

triangle IHC, the exterior angle SIH ICH IHC∃ ∃ ∃ ,= +  so that  

 

2 2θ φ= + a .   (1) 

 

 

 

 



Similarly, from the triangle IBH,  

 

θ φ= + x .   (2) 

 

Hence from (1) and (2), 
 

a x= 2 ,   (3) 
 

or the body's altitude is twice the angle between the mirrors I and H (or 

between their normals). The altitude  is zero when x is zero, that is when 

the mirrors I and H are parallel. In Figure 5.5, IO is parallel to the fixed 

direction HD; O is the zero-point of the scale. The angle OIP can thus be 

found from the reading on the graduated arc and, by (3), the body's altitude 

is twice this angle.  

a

 

The arc of the sextant is generally about one-sixth of the circumference of a 

circle (hence the name "sextant"), but instead of having 60 divisions each 

representing one degree, the arc is divided into 120 divisions. In this way, 

the altitude is read directly from the scale without the necessity of applying 

the factor 2 of equation (3). With the aid of sub-divisions and a vernier, 

altitude can be read with a first-class instrument to one-tenth of a minute of 

arc. 

 

 

5.3 The Vernier Scale 
 

In figure 5.7, 10 divisions of the so-called vernier scale V equal 9 divisions 

of the main scale S. It follows that the interval between divisions on V 

equals 0.9 times the interval between divisions on S. When the zero points 

of V and S are aligned, as shown in Figure 5.7 (A), the 1 mark on V will lie 

to the right of the 1 mark on S by 0.1 times the main-scale interval; 

similarly, the 2 mark on V will lie to the right of the 2 mark on S by 0.2 

times the main-scale interval, and so on. Suppose now the main scale S is 

moved to the right of the fixed vernier V by an arbitrary distance, say, 0.6 

times the main-scale interval as shown in Figure 5.7 (B). The zero of the 



vernier will lie between the zero and 1 marks on the main scale and, 

further, the 6 mark on V will be aligned with the 6 mark on S. In other 

words, the numerical value of the vernier mark which coincides with a 

mark on the main scale indicates the decimal part to be added to the main-

scale reading of the sextant. 

 
 

 

Figure 5.7  Vernier scale: showing subdivisions of a main scale. 

 

 

5.4 Sextant Corrections 
 

The sextant altitude, Hs, is the altitude as indicated by the sextant before 

any corrections have been applied. Hs contains systematic errors and can 

only be used for navigational calculations after several corrections have 

been applied. 

  

  

(a) Index error 

  

Index error, IE, is a constant error due to a lack of parallel alignment 

between the index and horizon mirrors. A sextant, unless recently 

calibrated, usually has an index error that has to be subtracted from the 

reading before they can be processed further. 

 



To check for index error, hold the sextant in your right hand and look at the 

sea horizon. By moving the index arm, line up the real and mirror horizons 

so that both appear as a single straight line. Now, look at the scale. If it 

reads zero, there is no index error. If the scale reads anything but zero, 

there is an index error. For example, if the scale reads +5’ when the 

horizons are aligned, then 5’ is subtracted from Hs; if the reading is below 

the zero mark, for example –5’, then –5’ is subtracted from Hs. 

 

1st correction:  H1 = Hs - IE 

 

(b) Dip 

 

Due to the curvature of the earth's surface, the apparent or visible sea 

horizon usually appears several arcminutes below the true horizon, 

depending on the height of eye, HE (Figure 5.8). The difference between 

the apparent or visible sea horizon and the true horizon is known as dip. 

Dip depends on the height of the observer's eyes. The higher the observer 

is from the sea horizon, the greater is the dip. 

 

Since the sextant sights on the visible sea horizon and not on the true 

horizon, dip corrections must always be made on sextant observations. A 

table of dip corrections (height by dip correction) can be found in the 

Nautical Almanac. Such corrections are negative. Hence they are always 

subtracted. 

 

The altitude obtained after applying corrections for index error and dip is 

referred to as apparent altitude, Ha. The apparent altitude is measured 

with respect to the true horizon. 

 

2rd correction: Ha = H1 - Dip 

 



 

Figure 5.8  The visible sea horizon is dipped below the true horizon. 

 

(c) Refraction 

 

As light passes from a less to a more dense medium, i.e. from space to 

earth, it is deflected toward the earth. This phenomenon is called 

refraction. Since the eye cannot detect the curvature of the light ray, an 

observed body appears to be higher in the sky. The angle R is the angle of 

refraction and represents the angular distance between the apparent and 

true position of the body (Figure 5.9). Refraction depends on the altitude of 

the observed body. For example, if the observed body is at the zenith, there 

is no refraction. And as the altitude of observed body decrease, refraction 

will increase. 
 

 

Figure 5.9  The apparent position of the celestial body is appeared 

 to be higher than it's true position. 

 

The nautical navigator altitude correction tables for refraction can be found 

in the Nautical Almanac. There is one table for stars and planets, another 

for the sun (with different values for sighting the upper and lower limbs), 

and another for the moon. Correction for refraction is always subtracted. 

 

3rd correction: H3 = Ha - R 



(d) Parallax 

 

Calculations of celestial navigation are measured with respect to the 

celestial horizon. However, the altitude Ha is measured with respect to the 

true horizon. Hence, correction has to be made. Such difference in angle 

between the altitude measured at the center of the earth (H4) and that 

measured at the surface of the earth (H3) is known as Parallax, PA (Figure 

5.10). Parallax is significant only when the object is near to the earth. 

Hence, in navigational practice, only the parallax of the moon need to be 

taken into account. Since PA is the difference between H3 and H4, 

therefore as a correction, PA must be added to H3 to get H4. 

 

4th correction: H4 = H3 + PA 

 

From Figure 5.10, we can see that PA will change as the moon moves from 

the horizon to the zenith. Towards the zenith the value of PA diminishes 

toward zero. At the true horizon, the value of PA will be at the maximum. 

Parallax of the moon on the true horizon is known as horizontal parallax, 

HP. It is the value recorded in the Nautical Almanac and serves as the 

basis for computing the parallax correction for the moon. 

 

 

Figure 5.10  Horizontal parallax and parallax of the moon. 

 

 

 



(e) Semi-diameter 

 

Semi-diameter, SD, is the angular distance between center and limb of a 

body (Figure 5.11). When observing the sun or the moon, it is not possible 

to locate the center with sufficient accuracy. It is therefore common 

practice to measure the altitude of the lower or upper limb of the body. 

However, it is the center of the body that serves as reference for its 

positional coordinates. Consequently, if we sight on the lower limb of the 

sun or the moon we must add the semi-diameter to our sextant reading. 

And if the upper limb is observed, the semi-diameter value is subtracted.  

 

Semi-diameter of sun and moon vary slightly from day to day depending 

on their distances from the earth. The correction tables for the sun, in the 

Nautical Almanac, include semi-diameter and refraction. The differences 

in the corrections for upper and lower limbs are due to the differential 

effects of refraction on the two limbs. The corrections for the moon, in the 

Nautical Almanac, include dip, refraction, semi-diameter, and parallax. 

Semi-diameter corrections for other bodies are insignificant and can be 

ignored. 

 

5th correction: H5 = H4 ± SD 

 

The altitude obtained after applying the above corrections (in the above 

sequence), suitable to be used for navigational calculations, is called 

observed altitude, Ho. That is Ho=H5. 

 

 

 

 

 
 



 

Figure 5.11  Semi-diameter of a celestial body. 

 

Now with the observed altitude, latitude is known. However, the longitude 

is not known yet. In the next few chapters, we shall see how to determine 

longitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 
 

Lunar Eclipse Method 
 

 

 

 

6.1 Introduction  
 

In the olden days, lunar eclipses have often been interpreted as bad omens. 

A well-known historical example dates back to Christopher Columbus. On 

his fourth voyage to America in 1504, Columbus faced problems. His ships 

were in poor condition due to shipworms and the vessels had to be beached 

in Jamaica. A lot of his supplies were stolen. Half of his crew had mutinied 

and worst still, the indigenous population refused to supply them with 

food. 

 

In this dire situation, Columbus had a great idea. Western European 

astronomers had calculated that a lunar eclipse would occur during the 

night of September 14-15, 1409. Columbus announced to the indigenous 

population that, due to the wrath of the Gods, the moon would disappear 

during the following night (Figure 6.1). The lunar eclipse appeared right on 

schedule and Columbus finally got his food supplies. 

 

 

Figure 6.1   Columbus announced to the indigenous population that the moon 

would disappear during the following night. 



6.2 What is a Lunar Eclipse 
 

A lunar eclipse occurs when the moon is covered by the shadow of the 

earth. That is, the earth comes between the sun and the moon, casting the 

earth's shadow on the surface of the moon (Figure 6.2). 

 

 

Figure 6.2  A lunar eclipse occurs when the moon is covered 

by the shadow of the earth. 

 

A partial lunar eclipse happens when the moon only passed through the 

outer part of the shadow (the penumbra). At this moment, the observer on 

the earth would see the moon only partially dimmed (Figure 6.3). 

 

On the other hand, a total lunar eclipse happens when the moon passes 

through the umbra. During this time, the observer on earth will see that the 

entire moon is covered (Figure 6.4). 

 

 

Figure 6.3  A partial lunar eclipse.  Figure 6.4  A total lunar eclipse. 

 

 

 

 



6.3 Lunar Eclipse Method 
 

Being lost at sea was one of the greatest fears of the early navigator. While 

the latitude of the navigator position can be easily determined with a 

sextant, the longitude is harder to determine. As mentioned earlier, 

longitude is a matter of time. There is no fixed point of reference in the 

sky, but only the uniform rotation of the earth every day. Thus if one 

knows the difference in local time at two points, one knows the 

longitudinal distance between them. Measuring the time where one is 

located is relatively straightforward: by observing the sun or the stars in the 

sky. Knowing the local time elsewhere at that same moment is another 

matter.  

 

In the ancient times, the only practical method for determining longitude 

was the well-known lunar eclipse method. Lunar eclipse provides an easily 

observable event and everyone sees the eclipse happen at the same time. 

Thus, Lunar eclipse provides a method of time "synchronization". The 

procedures of the lunar eclipse method are relatively simple. First, we 

determine the local time that the lunar eclipse starts or ends by direct 

observation. Next either we obtain the local time of another place from 

tables of Moon or we ask someone to station at a distant place to take the 

time where the lunar eclipse starts or ends again. Then we compare the 

local time for that event against the local time at that distant place. The 

difference in the two times is the difference in longitude. 

 

 

6.4 Weakness of the Lunar Eclipse Method 
 

Although this method to find the navigators' longitude is simple and 

reliable, the use of eclipses was obviously of little use to them. This is 

because lunar eclipses are relatively rare. There are only about two lunar 

eclipses per year. 

 



In ancient times, where accurate clocks were not available, sandglass was 

used as a timekeeper. As the sandglass does not provide accurate time, the 

timing of the lunar eclipse is inaccurate. The result is in an error in the 

longitude obtained. It was only in the 18th century that an accurate 

chronometer was invented. 

 

Moreover, tables of the Moon used in the olden days were imperfect. And a 

prediction of a lunar eclipse from them could easily be off by a quarter of 

an hour. Such an error, added to errors in determine the local time of the 

eclipse, could result in an error in longitude of 8 degrees. 

 

If tables of the Moon are not available, then one has to rely on someone at 

a distant place to take the time where lunar eclipse starts or ends again. 

And then one has to wait until the information is passed to one. Thus, this 

method is impractical at sea. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7 
 

Eclipses of Jupiter's Satellites Method  
 

 

 

 

7.1 Introduction 

lthough the lunar eclipse method was simple and reliable and was used 

 1610, Galileo Galilei (1564-1642) discovered, with his telescope, that 

Figure 7.1  1642). 

 

A

extensively on land, the use of eclipses was of little use to ships as eclipses 

are rare. The lack of an effective method for determining longitude had 

serious consequences for navigators and their vessels, often laden with 

precious goods. With increasing importance of navigation and a series of 

maritime disasters due to uncertainty about longitude, there was an urgent 

need to search for a satisfactory method of determining longitude at sea. 

 

In

four satellites surrounded Jupiter. Every now and then the satellites would 

pass in and out of the shadow of Jupiter and Galileo realised that these 

eclipses could provide a celestial clock in the determination of longitude. 

His discovery was extremely important because it revealed the existence of 

celestial bodies which rotated around a body other than the earth. 
 

 

Galileo Galilei (1564-



7.2 Eclipses of Jupiter's Satellites Method 

in space, and eclipses 

occur when a satellite passes into the planet's shadow. When a satellite 

Jupiter's Satellites method for 

ining longitude are relatively simple. First, we use a telescope to 

7.3 Disadvantages of the Eclipses of Jupiter's Satellite Method 

ean telescopes, in use before about 

res the use of tables of the times 

ed. However, accurate tables were not available. It 

 

Jupiter casts a shadow, which stretches behind it 

moves into eclipse, its light dims until the satellite disappears from view. A 

few hours later it emerges from the other side of the shadow, and as it does 

so it brightens and become visible again. 

 

The procedures of the eclipses of 

determ

watch one of the satellites of Jupiter as it revolves around Jupiter. 

Secondly, we note the local time at which this satellite appears or 

disappears behind Jupiter. Thirdly, we obtain the time from tables at which 

it appears to do so at Greenwich. Then the difference between these two 

times gives us our longitude. 

 

 

 

Using the eclipses of Jupiter's satellite method to determine longitude 

requires the use of a telescope. Galil

1650, were not optimum for observation of Jupiter's satellites. Their fields 

of view were extremely small, so that it was difficult to find the planet and 

its satellites and almost as difficult to keep it in the field of view. In 

addition, the telescopes could not be used during overcast weather at night 

because the satellites are not visible. 

 

Besides telescope, this method also requi

these satellites eclips

was not until 1668, that the first reasonably accurate tables were published 

by Giovanni Domenico Cassini (1625 - 1712). 

 
 



 

Figure 7.2  Giovanni Dom nico Cassini (1625-1712). 

 

he eclipses of Jupiter's satellites provided a wonderful method of 

 

e

T

establishing longitude on land, but it was practically useless in sea. This is 

because making observation with a telescope at the deck of a rocking ship 

was impossible. Galileo made some trials of telescope attached to a helmet 

(which he called "celatone") on ships, but this approach only worked with 

rather low-powered telescopes. Hence, Galileo's effort to make telescopes 

adequate for observing Jupiter's satellites was not successful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 
 

Lunar Distance Method 
 

 

 

 

8.1 Introduction 

hough the Jupiter's satellites eclipse method proved to be a better method 

 1475, a well-known German astronomer Regiomontanus suggested the 

 

Figure 8.1 easured 

with a cross-staff. 

 

T

than the lunar eclipse method, it was still not a successful method to be 

used at sea. This is because navigators were unable to observe the satellites 

with a telescope on the rocking deck of a ship. Hence, there was a 

desperate need to discover a practical method of determining longitude at 

sea.  

 

In

lunar distance method to find longitude. Lunar distance method is the 

measurement of the angular distance between the moon and a star or 

between the moon and the sun. While his theory was sound, the 15th 

century did not possess the instrument for measurement the lunar distance 

and the lunar tables to make it work. In was not until mid 15th century 

when the cross-staff was proposed for making lunar distance measurements 

(Figure 8.1). 

Lunar distance from a star is being m



Even with the stance 

method was still not succ r this. Firstly, 

8.2 Lunar Distance Method 
 

ent is most easily made with the sextant when 

e angular distance between the Moon and the other body is not great. At 

d are described below. 

 

h set of 

lunar observations consists of a lunar distance, the altitude of the 

  

es should be measured simultaneously and 

at at least 3 sets of lunar observations are obtained.   

 

 availability of instruments and tables, the lunar di

essful. There were two reasons fo

there was no instrument with which the angular distance between the moon 

and a star could be measured with sufficient accuracy from the deck of a 

moving ship. Secondly, astronomers could not predict the relative positions 

of the moon and the star with the necessary precision. It was only with the 

development of the sextant and the available of better lunar tables, that the 

lunar distance method for determining longitude proved successful. 

 

 

A lunar distance measurem

th

nighttime, measurement is made between the Moon and one of the 57 

selected stars listed in the daily pages of the Nautical Almanac. In daytime, 

the Sun may be used as the second body.  

 

The procedures of the lunar distance metho

(1) Take three simultaneous sets of lunar observations. Eac

Moon, the altitude of the sun or star and the local mean time (LMT) 

of the observations.   

  

All these required angl

repeatedly so th

 



 

Figure 8.2  A Lunar distance observation. 

 

(2) Calculate the mean of measured angles and LMT of the 

observations made. That is to say, the sums of the lunar distances, 

the moon's altitudes, the sun or the star's altitude, and the LMT 

should be divided by the number of sets. By so doing, small errors 

of observation are eliminated or reduced. 

 

(3) Use LMT and EoT, obtained from the almanac, to find the Local 

Apparent Time (LAT). 

 

LAT = LMT + EoT 

 

(4) Obtain the True Lunar Distance by clearing the mean of the 

measured lunar distances in (1) of the effects of refraction and 

parallax (Section 8.3). It is at this moment that we need the altitude 

of the moon and the altitude of the stars or the sun in order to 

ascertain the exact values of the refraction and parallax for the 

moon and sun or refraction for the stars.  

 

(5) Find Greenwich Apparent Time (GAT) from the True Lunar 

Distance in (4) by interpolation in the lunar-distance tables in the 

almanac.  

 

(6) The LONGITUDE is the difference between Local Apparent Time 

in (3) and Greenwich Apparent Time in (5). 

 

 

Lunar distance

Star's altitude Moon's altitude 

Horizon



8.3 Clearing the Lunar Distance 
 

When finding longitude by the lunar method, the most tedious part of the 

process is that which is known as clearing the distance. This involves 

reducing the apparent lunar distance to the true lunar distance or, in other 

words, clearing the apparent distance from the effects of parallax and 

refraction in order to ascertain the angle at the Earth's center between the 

directions of the moon's center and the star, or sun's center. In the 

following, two methods for clearing the lunar distance are discussed. One 

is Borda's Method and the other one is Merrifield's Method. Borda's 

Method allows us to get an exact true lunar distance. Merrifield's Method, 

on the other hand, allows us to get an approximated true lunar distance. 

 

 

8.3.1 Borda's Method for Clearing the Distance 
 

Chevalier Jean Borda, the French mathematician and astronomer, was born 

at Dax in 1733. He entered the French Navy and made nautical 

astronomical investigation for which he became well known. In 1787 

Borda published his method of clearing lunar distances. At the time of its 

introduction to navigators, and for many decades afterwards, Borda's 

method was considered by competent authorities to be the best. 
 

 
Figure 8.3  A navigational triangle. 

 

 



Let M be the true altitude of the Moon (arc MO), 

M be the apparent altitude of the Moon (arc Om), 

S be the true altitude of the Sun or star (arc SH), 

s be the observed altitude of the Sun or star (arc sH), 

D be the true lunar distance (arc SM ), 

d be the observed lunar distance (arc sm ). 

 

Due to the parallax of the Moon, the observed altitude of the Moon is 

smaller than the true altitude of the Moon as shown in Figure 8.3. And due 

to refraction, observed altitude of the Sun or star is bigger than the true 

altitude of the Sun or star. 

 

 

Using triangle ZSM and the law of cosines for sides, we have 
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Using triangle Zsm and the law of cosines for sides, we have 
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Equating (1) and (2), we have 
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 Apply logarithm to equations (3) and (4), we have 
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8.3.2 Application of Borda's method 
 

Observed Altitudes True Altitudes  Observed Distance 

 m = 13°29'27"  M = 14°18'32"  d = 107°52'04" 

 s =  31°11'34"  S = 31°10'07" 

 

Using the above data and apply Borda's method to get the true lunar 

distance. 

 

 

 d  107°52'04" 

 m  13°29'27"  log sec(m) 0.012151° 

 s  31°11' 34"  log sec(s) 0.067815° 

 d+m+s  152°33'05"  

(d+m+s)/2     76°16'32.5"  log cos(m+s+d)/2    -0.62479° 

(m+s-d)/2     -31°35'31.5"  log cos(m+s-d)/2     -0.06966° 

 M  14°18'32"  log cos(M) -0.013686° 

 S   31°10'07"   log cos(S) -0.067705° 



 (M+S)/2  22°44'19.5" 

 

 

log cos θ = 1/2{ 0.012151 + 0.067815 - 0.62479 - 0.06966  

- 0.013686 - 0.067705 } 

= -0.3479375 

 

           Hence θ = 63.33264127° 

     = 63°19'57.51" 

 

θ+(M+S)/2     86°04'17.01"      log sin{θ+(M+S)/2}   -0.0010° 

θ-(M+S)/2      40°35'38.01"      log sin{θ-(M+S)/2}    -0.1866° 

 

log sin(D/2) = 1/2{ -0.0010 - 0.1866 } 

        = -0.0938 

 

∴ D = 107.3653855° 

        = 107°21'55.3" 

 

Hence, the true lunar distance is 107°21'55.3". 

 

 

8.3.3 Merrifield's Approximation Method for Clearing the Lunar 

Distance 
   

 Dr John Merrifield was a well-known author of works on navigation. He 

invented the Merrifield method for clearing lunar distances. This method is 

direct in its application, requires no special tables, and is claimed to be a 

very close approximation well adapted for sea use. 

 

 

 

 



 
 
 
 
 
 
 
 

 

 
 

Figure 8.4  A navigational triangle. 
 

Let Z be the zenith of an observer, 

d be the observed lunar distance (arc sm), 

D be the true lunar distance (arc SM), 

m be the apparent Moon position, 

s be the apparent second body position, 

y be the Moon's apparent zenith distance (arc Zm), 

z be the second body's apparent zenith distance (arc Zs), 

S' = (y+z+d)/2, 

S* = (m+s+d)/2, 

C = Moon's correction for altitude (arc Mm), 

c = second body's correction for altitude (arc sS), 

θ = Zms, 

φ = Zsm. 

 

This method is an approximation method because the true lunar distance D 

(arc MS) is approximated by arc qp. 
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where  ( ) ( )M C m S s= −sec sin ,*  

and ( ) ( )N c s S m= −sec sin .*  

 

Then from formula (1), we have 

( ) ( ) ( ) ( )D d C c M N ec d S= − − + −2 cos cos * .  

 

 

8.3.4 Application of Merrifield's Approximation Method 
 

Observed Altitudes True Altitudes  Observed Distance 

 m = 13°29'27"  M = 14°18'32"  d = 107°52'04" 

 s = 31°11'34"   S = 31°10'07" 

   

 Using the above data and Merrifield's approximation method to obtain the 

approximated true lunar distance. 
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 Hence, the approximated true lunar distance is 107°21'30.1" . 

 

By comparing with the exact lunar distance obtained in section 8.3.2, we 

see that the approximated true distance obtained above is very close to our 

exact value of 107°21'55.3".  

 

 

 

 
 
 



Chapter 9 
 

Chronometer 
 

 

 

 
It had always been realized that in principle the use of a transportable clock was 

the simplest of all methods of finding longitude but in practice the mechanical 

problems of developing a suitable clock was complicated. The first practical 

timepiece which was sufficiently accurate to find longitude when carried in a ship 

was made in Yorkshire by John Harrison. When the offer of the great prize for 

longitude was made in 1714, Harrison was 17 years old and he apparently devoted 

his life to winning it. 

 

 

Figure 9.1  John Harrison (1693-1776) 

 

The technical problem which Harrison solved was to develop a clockwork 

mechanism which would run at a uniform rate in a moving ship under conditions 

of varying temperature. He eventually cracked this problem with his fourth 

timepiece (H4) which he completed in 1759 at the age of 66. Harrison made it 

look like an ordinary pocket watch although it was laid on a cushion in a box 

whose level could be adjusted by hand. 



 

Figure 9.2  H4, Harrison's fourth marine chronometer. 

 

The introduction of the marine chronometer not only solved the problem of 

measuring longitude but also made possible more flexible methods of fixing 

position which did not involve finding latitude and longitude separately. The best 

example is Sumner's method, which will be discussed in a later chapter. There are 

later refinements of this way of fixing position but they are mostly based on 

Sumner's method. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 10 
 

Meridian Transit Method 
 

 

 

 

10.1 Meridian Transit Method 
  

We know that the earth rotates with an angular velocity of 15 degrees per hour with 

respect to the mean sun.  Using this fact, the time of local meridian transit of the (true) 

sun, TTransit, can be used to calculate the observer's longitude. Note that TTransit is measured 

as GMT. The procedures of the Meridian Transit method are described below.  

 

(1) Determine the TTransit [h]. (Refer section 10.2) 

 

(2) From the Nautical Almanac, for TTransit, find EoTTransit by interpolation. 

  

(3) Use GMT and EoTTransit to find GAT. 

 

GAT[h] = GMT[h]- EoT[h] 

 

 

(4) Use GAT and LAT to determine longitude. Note that our LAT is 1200h. 

Lon[°]=15(LAT-GAT) 

 

 

10.2 How to Determine TTransit 

 

Local Apparent Noon (LAN) is the local time when the (true) sun is at our meridian. 

That is the LAT is 1200 noon. A sextant reading is taken at a time before the LAN (T1).  

Assuming that the sun moves along a symmetric arc in the sky and keeping our sextant 

reading, the time (T2) past LAN at which the sun has an altitude equal to our sextant 

reading is taken. Then the mean of T1 and T2 is our TTransit. 

 



i e T
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Transit. . =
+1 2

2
 

 

 

 

Figure 10.1  Sun moves along a symmetric arc in the sky. 
 

 

10.3 Errors of Meridian Transit Method 
 

Unfortunately, the arc of the true sun is usually not quite symmetrical with respect to 

TTransit due to the changing declination of the sun. As a result, TTransit is not exactly the 

mean of T1 and T2. 

 

The resulting systematic error in longitude is negligible around the times of the solstices 

when Dec is almost constant, and is greatest at the times of the equinoxes when the rate of 

change of Dec is greatest (Figure 10.2). 

 

Figure 10.2  Motion of  the Sun. 

 
 
 



Chapter 11 
 

Sumner's Method 
 

 

 

 

11.1 Introduction 
 

Sumner lines were discovered by chance by a sea captain, Charles Sumner 

in 1837. On a voyage back home, he was worried because he had been 

sailing for several days in bad weather, and had not been able to see the 

sun or any stars, the coast was getting near, and he did not know where he 

was. Suddenly there was a break in the clouds, so he grabbed his sextant 

and snatched a quick sun sight, before the clouds covered the sky again. He 

also timed his observation with a chronometer. 

 

Now he was wondering what to do with this information so he played a 

"what if" game. He knew the altitude formula and he said, "what if my 

latitude is…" and calculated the corresponding longitude and he plotted it 

on a chart. After doing that half a dozen times he suddenly realized that all 

the points he was marking on the chart seemed to fall on a straight line. 

Without thinking about it any more, he saw that the line needed pushing 

north by 30 odd miles to lead straight into his destination, so he turned 

north for 30 miles, then turned to port until he was sailing parallel to that 

Sumner line. His crew were a bit perplexed at that, wondering if the 

captain had gone mad, but when suddenly they arrived right at the entrance 

of the harbor, they thought he was a genius. And so did the rest of the 

sailing community. 

 

Although this single observation did not tell him the position of his ship, 

Captain Sumner realized that it did tell him that the ship must lie 



somewhere on a line, actually a position circle, which he could draw on 

his chart - a remarkable discovery to be made by the captain of a ship 

during a storm. 

 

 

11.2 The Position Circle 
 

Let S  be the heavenly body, 

U  be the GP of the heavenly body, 

C  be the center of the earth, 

PGQ be the Greenwich meridian, 

P and Q be the north and south pole respectively. 

 

 

Figure 11.1  A position circle. 

 

Now, consider the observation of altitude from which the true zenith 

distance z is derived. If the observer were actually at the point K on the 

earth’s surface, then angle KCU or the great circle arc UK is the true zenith 

distance z. Since the GMT at which the observation of altitude was made is 

noted, the GP of the body U can then be found from the Nautical Almanac. 

Thus U is a definite point on the earth’s surface. The true zenith distance z 

is also known, and therefore the observer must be situated somewhere on a 

small circle KJR of which U is the pole, every point of this small circle 



being an angular distance z from U. This small circle is called the position 

circle. 

  

It is noted that a single observation of a heavenly body leads only to a 

certain small circle, on which the observer is situated. If we suppose that a 

similar observation of another heavenly body is made at the same GMT, a 

second position circle will be derived on which the observer must be 

situated. Therefore his actual position must be at one or other of the two 

points of intersection of the two position circles. As the approximated 

position of the ship is always known, there is no difficulty in deciding 

which of the two points is the correct position.  

 

 

11.3 Sumner Lines of Position 
 

Sumner's method makes use of two points on the position circle to draw a 

straight line, called the sumner line of position (Sumner LoP). Thus, 

Sumner's line of position is a secant. As a sumner line tells us that we can 

be any where on this line, it does not tells us our position. So in order to 

obtain our position, we need to another sumner's line. Then the intersection 

of the two sumner lines is our position.  

 

 

11.4 Sumner's Method 
 

Although Sumner's method is quite old, it is an interesting sight reduction 

alternative. The procedures of the Sumner's method are described below. 

 

 

(1) Choose a convenient position on your map, preferable the point 

where two grid lines intersect. This position is called assumed 

position, AP.  

 



(2) Find the altitude H of a selected celestial body by sextant and note 

the GMT. 

 

(3) From the Nautical Almanac, for the date and GMT, find the GHA 

and Dec of the body. 

 

(4) Use H, LatAP and Dec to compute LHA. 

 

⎥
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⎢
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)cos()cos(
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LHA
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AP  

  

(5) From our assumed latitude, LatAP, two longitudes are obtained 

based on the following formulas: 

 

Lon1 = LHA - GHA 

If Lon1<-180°, set Lon1 = Lon1 + 360°. 

 

Lon2 = 360° - LHA - GHA 

If Lon2<-180°, set Lon2 = Lon2 + 360°. 

If Lon2>180°, set Lon2 = Lon2 - 360°. 

 

(6) From the longitudes obtained in (5), choose the one that is nearer to 

our assumed longitude, LonAP and mark it on the chosen parallel of 

latitude. 

 

(7) Repeat the procedure with another assumed position to obtain 

another point. 

 

 

(8) Draw a straight line through both obtained points. And this is your 

approximate Sumner LoP. 

 



(9) A second Sumner LoP is obtained by entering the data of a second 

body. 

 

(10) The point of intersection of both LoPs is your position (fix). 

 

 
Figure 11.2 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 12 
 

The Intercept Method 
 

 

 

 

12.1 Introduction 
 

The practice of position fixing by celestial bodies has been used by 

navigators in ocean passage until accurate and low cost electronic 

navigation aids, like transit satellite and GPS, are available. Sun sights 

during the daylight hours and star sights during twilight are obtained to 

determine the ship’s position. The Marcq Saint-Hilaire or intercept 

method is the most popular way to reduce a sight for a position line. The 

intercept method uses the difference between the observed true altitude and 

the calculated altitude of the ship's assumed position to give an intercept 

for plotting the position line on chart. 

 

 

12.2 The Position Line 
 

As we have seen, the altitude observation of a heavenly body yields the 

information that at the time of observation the ship is situated on a certain 

small circle KJR (Figure 11.1). We shall suppose that in Figure 11.1, D 

represents the approximated position of the ship at this moment. It is clear 

that the only part of the position circle with which the navigators need 

concern is that part in the immediate neighborhood of D. Their objects then 

are to represent on the chart this part AJB of the position circle (shown 

with a heavy line in Figure 11.1). 

 



Now the latitude and longitude of U and of D are known, hence the length 

of the great circle arc UD can be calculated. But this arc is simply the 

zenith distance of the hypothetical observer situated at D. We shall call this 

zenith distance UD the calculated zenith distance. Now the length of the 

arc UJ is known from the observation, it is the true zenith distance z; 

hence, by subtraction we obtain the length of the arc DJ. This arc DJ is 

known as the intercept. The arc DJ is perpendicular to the position circle 

at J, for U is the pole of KJR. 

 

Also, the spherical angle UDP is easily seen to be the azimuth of the 

heavenly body, at the GMT concerned, for an observation at D can be 

calculated. In Figure 11.1, the azimuth of J is the same as the azimuth of U, 

which we now suppose to be known. Thus, under the circumstances 

depicted in figure 11.1, where the calculated zenith distance UD is greater 

than the true zenith distance UJ, the navigator can draw from the 

approximated position on his chart a straight line in the direction given by 

the azimuth of the heavenly body. He then marks off along this line a 

distance equal to the intercept, and through the point so obtained he draws 

a straight line, called the position line, perpendicular to the line of 

azimuth. The position line represents on his chart the portion AJB of the 

position circle KJR (Figure 11.1). This line is know as a tangent to the 

position circle at J. It is clear that if D is within the position circle, that is, 

if the calculated zenith distance is less than the true zenith distance, the 

intercept will be marked off in the direction opposite to that given by the 

azimuth. 

 

 

12.3 The Intercept Method 
 

The intercept method of obtaining a position line was discovered by a 

French navigator Marcq St. Hilaire in 1875. Now with an idea of what the 

position line is, we can now described the procedures of applying the 



intercept method to obtain ship current position, called “fix”. The 

procedures of obtaining a fix are described below.   

 

 

(1) Choose a convenient position on your map, preferably the point 

where two grid lines intersect. This position is called assumed 

position, AP.  

 

(2) Find the altitude H of a selected celestial body by sextant and note 

the GMT. 

 

(3) From the Nautical Almanac, for the date and GMT, find the GHA 

and Dec of the body. 

 

(4) Use the GHA and LonAP to compute LHA. 

 

LHA = GHA ± LonAP  

 

+ : For eastern longitude  

- : For western longitude 

LonAP : Longitude of AP. 

 

If LHA is not in the range between 0° and 360°, add or subtract 

360°. 

 

Figure 12.2 



(5) Calculate the altitude of the observed body as it would appear from 

AP. This is called calculated or computed altitude, Hc. 

 

( ) ( ) ( ) ( ) ( )[ ]Hc Lat Dec Lat Dec LHAAP AP= +arcsin sin sin cos cos cos ,  

 

where LatAP is the geographic latitude of AP. 

 

(6) Calculate the azimuth of the body, AzN, the direction of GP with 

reference to the geographic north point on the horizon, measured 

clockwise from 0° through 360° at AP 

 

( ) ( ) ( )
( ) ( )Az

Dec Hc Lat

Hc Lat
AP

AP

=
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

arccos
sin sin sin

cos cos
.  

 

The azimuth angle, Az, the angle formed by the meridian going 

through AP and the great circle going through AP and GP, is not 

necessarily identical with AzN since the arccos function yields 

results between 0° and +180°. To obtain AzN, apply the following 

rules: 

Az
Az if LHA

Az if LHAN =
<

°− >
⎧
⎨
⎩

sin
sin .

0
360 0    

 

(7) Calculate the intercept, Ic, the difference between observed (Ho) 

and computed (Hc) altitude. For the following procedures, the 

intercept is expressed in distance units: 

 

[ ] ( )Ic nm Ho Hc= −60    or   [ ] ( )Ic km Ho Hc= −
400316

360
.

,  

 

The mean perimeter of the earth is 40031.6 km. 

 

 

 



(8) Take the map and draw a suitable segment of the azimuth line 

through AP. Measure the intercept, Ic, along the azimuth line 

(towards GP if Ic>0, away from GP if Ic<0) and draw a 

perpendicular line through the point thus located. This 

perpendicular line is the plotted (approximate) position line. 

 

 

 

 

 
 
 
 
 
 
 
 
 
    Figure 12.3a                   Figure 12.3b 

 

 

(9) To obtain the second position line needed to mark your position, 

repeat the above procedure (same AP) with altitude and GP of 

another celestial body or the same body at a different time of 

observation. The point where both plotted position lines intersect is 

your established position (fix). 
 

 

 

Figure 12.4 

 



If a high precision is required, the intercept method can be applied 

iteratively, that is repeating the calculation with the obtained position (fix) 

instead of AP (same altitudes and GP of the 2 observed bodies), until the 

obtained position remains virtually constant. 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 13 
 

Prime Vertical Method 
 

 

 

 
Before the introduction of the Sumner's method, prime vertical method is a 

common method used by navigator to find their longitude. At sea, navigator will 

determine the latitude at noon. After sometimes, dead reckoning is used to 

determine the new local latitude. Then this obtained latitude is the assumed 

latitude used in the prime vertical method to determine the longitude. Dead 

reckoning is the navigational term for calculating one's new position from the 

previous position, course and distance (calculated from the vessel's average speed 

and time elapsed). 

 
Prime vertical method makes use of the altitude when a celestial body is on the 

prime vertical to determine longitude. The celestial body is said to be on the prime 

vertical when its azimuth is 90° or 270°. The procedures of the method are 

described below. 

 

(1) Obtain an assumed latitude, LatAP and the declination of the body, dec. 

 

(2) Use LatAP  and Dec to calculate the observed altitude, Ho, of the body. 

 

( )
( )Ho

Dec
Lat AP

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−sin
sin

sin
1  

  

(3) Obtain sextant altitude, Hs, by adding navigational errors to Ho. 

 

(4) Note the GMT when the sextant reading gives Hs. 



  

(5) From the Nautical Almanac, for the GMT, obtain the GHA of the body. 

 

(6) Use Ho and Dec to calculate the meridian angle, t, east or west of the 

body. 

( )
( )t

Ho
Dec

=
⎡

⎣
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−sin
cos
cos
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(7) Use GHA and t to determine longitude. 

 

Lon GHA t= ±  
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